Table of Contents

Operation Section

1. **PRECAUTIONS FOR SAFETY**
 - 1.1 Foreword ... 6
 - 1.2 Definition of Terms .. 6
 - 1.3 General Precautions 6

2. **SPECIFICATIONS**
 - 2.1 Exterior Dimension Diagram 7
 - 2.2 Technical Specifications 8
 - 2.3 Characteristics ... 10

3. **CONSTRUCTION**
 - 3.1 Internal Structure .. 16
 - 3.2 Basic Construction .. 17
 - 3.3 Air Flow .. 17

4. **REFRIGERANT SYSTEM**
 - 4.1 Refrigerant System Construction 18
 - 4.2 Compressor ... 19
 - 4.3 Condenser ... 20
 - 4.4 Capillary Tube .. 20
 - 4.5 Evaporator ... 20
 - 4.6 High Pressure Switch 21

5. **ELECTRICAL SYSTEM**
 - 5.1 Circuit Diagram .. 22
 - 5.2 Control Box and Relay Board 23
 - 5.3 Power Supply Requirements 24
 - 5.4 Wall Thermostat Connection 27
 - 5.5 Warning Signal Connection (Output Signal Terminal L+ and L-) 29
 - 5.6 Fire Alarm Control Panel Connection (Input Signal Terminal E+ and E-) 30
 - 5.7 Basic Operation ... 31
 - 5.8 Relay Board ... 33
 - 5.9 Control Specifications 36
 - 5.10 Compressor ... 38
 - 5.11 Fan Motor ... 39
 - 5.12 Control Box ... 40
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.13</td>
<td>Compressor Motor Relay</td>
<td>40</td>
</tr>
<tr>
<td>5.14</td>
<td>Fan Motor Relay</td>
<td>41</td>
</tr>
<tr>
<td>5.15</td>
<td>Overcurrent Relay</td>
<td>41</td>
</tr>
<tr>
<td>5.16</td>
<td>Temperature Thermistor</td>
<td>42</td>
</tr>
</tbody>
</table>

Repair Section

6. TROUBLESHOOTING
 6.1 Troubleshooting ... 43
 6.2 Self-Diagnostic Codes 44
 6.3 Troubleshooting Chart 45
 6.4 Basic Inspection .. 49
 6.5 Inspection of Fan Motor 51
 6.6 Inspection of Compressor Motor 52
 6.7 Thermistor Inspection 52
 6.8 Wiring Connection Inspection 53
 6.9 Refrigerant System Inspection 53

7. DISASSEMBLY
 7.1 Parts Construction .. 54
 7.2 Disassembly .. 55
 7.3 Removal of Control Panel 56
 7.4 Removal of Condenser Fan Assembly 57
 7.5 Removal of Evaporator Fan Assembly 58
 7.6 Removal of Electrical Components 61

8. REFRIGERANT SYSTEM REPAIR
 8.1 Repair of Refrigerant System 62
 8.2 Removal of Refrigeration Cycle Components 64
 8.3 Charging the System with R-410A Refrigerant 65
 8.4 Refrigerant Charging Work 70

9. REASSEMBLY
 9.1 Removal of Unit ... 72
 9.2 Compressor Mounting 72
 9.3 Condenser Fan Assembly 72
 9.4 Evaporator Fan Assembly 73
 9.5 Wiring Notice .. 73
 9.6 Perform the Inspection 73
1. PRECAUTIONS FOR SAFETY

1.1 Foreword

- This manual has been published to service the MovinCool Classic 40. Please use this service manual only when servicing the Classic 40.

1.2 Definition of Terms

WARNING	Describes precautions that should be observed in order to prevent injury to the user during installation or unit operation.
CAUTION	Describes precautions that should be observed in order to prevent damage to the unit or its components, which may occur during installation or unit operation if sufficient care is not taken.
NOTE	Provides additional information that facilitates installation or unit operation.

1.3 General Precautions

WARNING

- All electrical work if necessary, should only be performed by qualified electrical personnel. Repair to electrical components by non-certified technicians may result in personal injury and/or damage to the unit. All electrical components replaced must be genuine MovinCool parts, purchased from an authorized reseller.
- When handling refrigerant, always wear proper eye protection and do not allow the refrigerant to come in contact with your skin.
- Do not expose refrigerant to an open flame.
- The proper electrical outlet for MovinCool units must be equipped with a “UL” approved ground-fault breaker to prevent electrical shock from the unit.
- When brazing any tubing, always wear eye protection, and work only in a well ventilated area.
- Disconnect power before servicing unit.
- Be careful of any sharp edges when working on unit.
2. SPECIFICATIONS

2.1 Exterior Dimension Diagram

(Unit: inch)
2.2 Technical Specifications

<table>
<thead>
<tr>
<th>ITEM</th>
<th>SPECIFICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic Features</td>
<td></td>
</tr>
<tr>
<td>Operation</td>
<td>Electronic</td>
</tr>
<tr>
<td>Control</td>
<td>Electronic</td>
</tr>
<tr>
<td>Electronic Characteristics</td>
<td></td>
</tr>
<tr>
<td>Voltage Requirement</td>
<td>3 Phase, 220 V, 60 Hz</td>
</tr>
<tr>
<td>Min. - Max. Voltage</td>
<td>Min. 198 V, Max. 242 V</td>
</tr>
<tr>
<td>Starting Current</td>
<td>72 A</td>
</tr>
<tr>
<td>Recommended Fuse Size</td>
<td>25 A</td>
</tr>
<tr>
<td>Cooling Capacity and Power Consumption</td>
<td></td>
</tr>
<tr>
<td>Evaporator: 95 °F (35 °C), 60 % RH/Condenser: 95 °F (35 °C), 60 % RH</td>
<td></td>
</tr>
<tr>
<td>Total Cooling Capacity (^{*1})</td>
<td>39000 Btu/h (11400 W)</td>
</tr>
<tr>
<td>Sensible Cooling Capacity (^{*1})</td>
<td>16500 Btu/h (4830 W)</td>
</tr>
<tr>
<td>Power Consumption (^{*1})</td>
<td>4.20 kW</td>
</tr>
<tr>
<td>Current Consumption (^{*1})</td>
<td>14.0 A</td>
</tr>
<tr>
<td>Power Factor</td>
<td>79 %</td>
</tr>
<tr>
<td>Refrigerant Circuit</td>
<td></td>
</tr>
<tr>
<td>Compressor</td>
<td></td>
</tr>
<tr>
<td>Compression Type</td>
<td>Hermetic Scroll</td>
</tr>
<tr>
<td>Output</td>
<td>2.30 kW</td>
</tr>
<tr>
<td>Evaporator</td>
<td></td>
</tr>
<tr>
<td>Type of Fan</td>
<td>Centrifugal Fan</td>
</tr>
<tr>
<td>Air Flow</td>
<td>1060 CFM (1800 m³/h)</td>
</tr>
<tr>
<td>Max. External Static Pressure (^{*2})</td>
<td>1.72 IWG (430 Pa)</td>
</tr>
<tr>
<td>Condenser</td>
<td></td>
</tr>
<tr>
<td>Motor Output</td>
<td>0.75 kW</td>
</tr>
<tr>
<td>Condenser</td>
<td></td>
</tr>
<tr>
<td>Type of Fan</td>
<td>Propeller Fan</td>
</tr>
<tr>
<td>Air Flow</td>
<td>2650 CFM (4500 m³/h)</td>
</tr>
<tr>
<td>Max. External Static Pressure (^{*2})</td>
<td>0.05 IWG (12 Pa)</td>
</tr>
<tr>
<td>Refrigerant</td>
<td></td>
</tr>
<tr>
<td>Motor Output</td>
<td>0.40 kW</td>
</tr>
<tr>
<td>Refrigerant</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>R-410A</td>
</tr>
<tr>
<td>Amount</td>
<td>3.90 lb (1.77 kg)</td>
</tr>
<tr>
<td>Signal Connection</td>
<td></td>
</tr>
<tr>
<td>Fire Alarm Input</td>
<td>• Dry contact type (recommended)</td>
</tr>
<tr>
<td></td>
<td>• No-voltage contact input/Contact resistance less than 100 ohm</td>
</tr>
<tr>
<td>Warning Signal Output</td>
<td>2 A at 30 V (DC/AC) or less (resistive load)</td>
</tr>
<tr>
<td>Power Cord</td>
<td></td>
</tr>
<tr>
<td>NEMA Plug Configuration</td>
<td>L15 - 30</td>
</tr>
<tr>
<td>Gauge x Length</td>
<td>12 AWG (4-core) x 6 ft</td>
</tr>
<tr>
<td>Dimension</td>
<td></td>
</tr>
<tr>
<td>W x D x H</td>
<td>25.8 x 43.5 x 38.0 in (656 x 1106 x 965 mm)</td>
</tr>
<tr>
<td>Weight</td>
<td></td>
</tr>
<tr>
<td>Net</td>
<td>344 lb (156 kg)</td>
</tr>
<tr>
<td>Shipping</td>
<td>396 lb (180 kg)</td>
</tr>
<tr>
<td>Operating Condition Range</td>
<td>Max. Inlet Air</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td>113 °F (45 °C), 50 % RH</td>
</tr>
<tr>
<td>Maximum Sound Level</td>
<td>Measured at 3.28 ft (1 m) from surface of unit.</td>
</tr>
</tbody>
</table>

- Specifications are subject to change without notice.

< NOTE >

*1 Rated at evaporator external static pressure 0.63 IWG (157 Pa).
*2 Confirm pressure drop of duct.
2.3 Characteristics

(1) How to read the cooling capacity curve

Example

<table>
<thead>
<tr>
<th><Condition></th>
<th><Cooling Capacity></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry Bulb: 95 °F (35 °C)</td>
<td>MIN.: 50500 Btu/h</td>
</tr>
<tr>
<td>Wet Bulb: 77 °F (25 °C)</td>
<td>MAX.: 58000 Btu/h</td>
</tr>
<tr>
<td>Air Volume: 1500 CFM (2550 m³/h)</td>
<td></td>
</tr>
</tbody>
</table>

Total Air Volume CFM (X10² m³/h)

Cooling Capability (X10³ Btu/h)

Dry Bulb Temp. °F (°C)

Wet Bulb Temp. °F (°C)
(2) Cooling capacity curve
(3) Power consumption curve

- **Dry Bulb Temp. °F (°C)**
 - 113 (45)
 - 104 (40)
 - 95 (35)
 - 68 (20)
- **Wet Bulb Temp. °F (°C)**
 - 68 77 86 95
 - 104
- **Total Air Volume CFM (X10^2 m³/h)**
 - 200 (7)
 - 800 (14)
 - 1000 (17)
 - 1200 (20)
- **Power Consumption (kW)**
 - 2
 - 3
 - 4
 - 5
 - 6
 - 7
 - 8

Diagram:

- Graph showing the relationship between Dry Bulb Temp., Wet Bulb Temp., and Power Consumption, with Total Air Volume CFM (X10^2 m³/h) on the x-axis and Power Consumption (kW) on the y-axis.
(4) Current consumption curve

- **Dry Bulb Temp. °F (°C):**
 - 113 (45)
 - 104 (40)
 - 95 (35)
 - 68 (20)

- **Wet Bulb Temp. °F:**
 - 68
 - 77
 - 86
 - 95

- **Total Air Volume CFM (X10^2 m^3/h):**
 - 400 (7)
 - 800 (14)
 - 1000 (17)
 - 1200 (20)

- **Current Consumption (A):**
 - 11
 - 12
 - 13
 - 14
 - 15
 - 16
 - 17

- **Current Consumption (A):**

- **Wet Bulb Temp. °F:**
 - 68
 - 77
 - 86
 - 95

- **Dry Bulb Temp. °F:**
 - 113
 - 104
 - 95
 - 86
 - 77
 - 68

- **Total Air Volume CFM (X10^2 m^3/h):**
 - 400
 - 800
 - 1000
 - 1200
(5) Cool air temperature difference curve
(6) Extension static pressure and air volume curve of cool air

![Graph showing the relationship between total air volume and external static pressure, indicating the usage range.](image-url)
3. CONSTRUCTION

3.1 Internal Structure
3.2 Basic Construction

- The interior of Classic 40 is divided into two sections. The front section houses the evaporator and control box, and the rear section houses the condenser and the compressor.

3.3 Air Flow

(1) Air flow for the condenser

- Air drawn from the sides and rear inlets passes through the condenser which extracts the heat. This hot air is blown out through the exhaust air duct on top of the unit.

(2) Air flow for the evaporator

- Air drawn from the front inlet passes through the evaporator and is cooled. This cool air is blown out through the upper outlet on top of the unit.
- Cooling air duct (optional) can be installed to cool the object.
- All air inlets are provided with air filters.
4. REFRIGERANT SYSTEM

4.1 Refrigerant System Construction

The component parts of the refrigerant system include the following:

- Compressor, Evaporator, Condenser, Capillary tube

The parts above are all connected by copper pipes with brazed connections.
4.2 Compressor

- The compressor used for the unit is hermetically sealed. The compressor and the compressor motor are in one casing.

(1) Compressor theory of operation

- The scroll utilizes an involuted spiral which, when matched with a mating scroll form, generates a series of crescent-shaped gas pockets between the two members. During compression, one scroll remains stationary (fixed scroll) while the other form (orbiting scroll) is allowed to orbit (but not rotate) around the first form. As this motion occurs, the pockets between the two forms are slowly pushed to the center of the two scrolls while simultaneously being reduced in volume. When the pocket reaches the center of the scroll form, the gas, which is now at a high pressure, is discharged out of a port located at the center. During compression, several pockets are being compressed simultaneously, resulting in a very smooth process. Both the suction process (outer portion of the scroll members) and the discharge process (inner portion) are continuous.

(2) Compressor operation

1) Compression in the scroll is created by the interaction of an orbiting spiral and a stationary spiral. Gas enters the outer openings as one of the spirals orbits.
2) The open passages are sealed off as gas is drawn into the spiral.
3) As the spiral continues to orbit, the gas is compressed into two increasingly smaller pockets.
4) By the time the gas arrives at the center port, discharge pressure has been reached.
5) Actually, during operation, all six gas passages are in various stages of compression at all times, resulting in nearly continuous suction and discharge.

< NOTE >

When the compressor shuts off, the compressor motor may run backward for a moment or two until internal pressures is equalized. This has no effect on compressor durability but may cause an unexpected sound after the compressor is turned off and should not be diagnosed as a malfunction.
4.3 Condenser

- The condenser is a heat exchanger with copper tubes that are covered with thin aluminum projections called plate fins.
- Heat is given off and absorbed by air being pulled across the condenser fins by the propeller fan. The air is then expelled through the exhaust air duct.

4.4 Capillary Tube

- The capillary tube is a long thin tube that utilizes line flow resistance as an expansion valve. The length and the inner diameter of the capillary tube are determined according to the capacity of the refrigeration system, operating conditions, and the amount of refrigerant. The high pressure, high temperature liquid refrigerant sent from the condenser expands rapidly as the refrigerant is sprayed out through the fixed orifice in the capillary tube. As a result, the temperature and state of the refrigerant becomes low and mist-like, and therefore evaporates easily.

4.5 Evaporator

- The evaporator is a heat exchanger covered with plate fins. Heat is removed from the air being pulled across the evaporator by the centrifugal fan. The resulting cool air is expelled through the cooling air ducts.
4.6 High Pressure Switch

- The high pressure switch prevents the condenser and compressor from being damaged by excessively high pressure in the high pressure line of the refrigeration cycle. The switch is normally closed. The snap disk responds to the variations in pressure and, if pressure is abnormally high, the snap disk moves down to push the pin down, causing the internal contacts to open. This interrupts the ground signal at the control board (CN13 connector) which turns the compressor off.

- Possible causes of this trouble include:
 - The condenser air filter is dirty, restricting air flow.
 - The condenser blower is defective.
5. ELECTRICAL SYSTEM

5.1 Circuit Diagram

```
<table>
<thead>
<tr>
<th>AP</th>
<th>Attachment Plug</th>
<th>MC</th>
<th>Compressor Motor</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB1</td>
<td>Terminal Block</td>
<td>RB</td>
<td>Relay Board</td>
</tr>
<tr>
<td>TB2</td>
<td>Terminal Block</td>
<td>CN1</td>
<td>Connector for RPHR</td>
</tr>
<tr>
<td>TB3</td>
<td>Terminal Block</td>
<td>CN2</td>
<td>Connector for RTS</td>
</tr>
<tr>
<td>TB4</td>
<td>Terminal Block</td>
<td>CN3</td>
<td>Connector for HPRS</td>
</tr>
<tr>
<td>MF1</td>
<td>Evaporator Fan Motor</td>
<td>RTS</td>
<td>Room Thermistor</td>
</tr>
<tr>
<td>MF2</td>
<td>Condenser Fan Motor</td>
<td>CTS</td>
<td>Freeze Protection Thermistor</td>
</tr>
<tr>
<td>RPHR</td>
<td>Reverse Phase Protector</td>
<td>CB</td>
<td>Control Board</td>
</tr>
<tr>
<td>MCF</td>
<td>Fan Motor Relay</td>
<td>G</td>
<td>Grounding</td>
</tr>
<tr>
<td>MCC</td>
<td>Compressor Motor Relay</td>
<td>IOLF1</td>
<td>Inner Overload Relay of MF1</td>
</tr>
<tr>
<td>HPRS</td>
<td>High Pressure Switch</td>
<td>IOLF2</td>
<td>Inner Overload Relay of MF2</td>
</tr>
<tr>
<td>OCF1</td>
<td>Overcurrent Relay MF1</td>
<td>OLC</td>
<td>Inner Overload Relay of Compressor</td>
</tr>
<tr>
<td>OCF2</td>
<td>Overcurrent Relay MF2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

```
Control Board

<table>
<thead>
<tr>
<th>SW1</th>
<th>COOL ON/OFF Switch</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW2</td>
<td>FAN Switch</td>
</tr>
<tr>
<td>SW3</td>
<td>SET TEMP (\n) Switch</td>
</tr>
<tr>
<td>SW4</td>
<td>SET TEMP (\Delta) Switch</td>
</tr>
</tbody>
</table>
```
5.2 Control Box and Relay Board

- Compressor Motor Relay (for Compressor and Condenser Fan Motor)
- Reverse Phase Protector
- Overcurrent Relay (for Evaporator Fan Motor)
- Overcurrent Relay (for Condenser Fan Motor)
- Relay Board Fuse
- Terminal Block (for Signal Connection)
- Terminal Block (for Power Cord)
- Fan Motor Relay (for Evaporator Fan Motor)
- Relay Board
- Relay Board Fuse (5A)
- 4-Position Dip Switch
- “OFF” Position
5.3 Power Supply Requirements

(1) Plug Connection

• Check the prongs and surface of the power cord plug for dust/dirt. If dust and/or dirt are present, wipe off with a clean, dry cloth.

• Check the power cord, plug and prongs for damage or excess play. If any damage or excess play is found, contact your MovinCool reseller or a qualified technician for repair.

⚠️ WARNING

• If the power cord or plug is damaged, repair should only be performed by qualified electrical personnel.

• Do not connect/disconnect the power cord or attempt to operate buttons with wet hands. This could result in electrical shock.

• The power supply should be a dedicated single outlet circuit with a UL approved short-circuit and ground fault protective breaker with a recommended fuse size of 25 A (25 A maximum).

• Because of potential safety hazards under a certain condition, we strongly recommend against the use of an extension cord. However, if you still elect to use an extension cord, it is absolutely necessary that it is a UL listed, 4-wire grounding type appliance extension cord, having a 4-blade grounding plug and a 4-slot receptacle that plugs into the appliance. The marked rating of the extension cord should be 220 V, 25 A or equivalent.

⚠️ CAUTION

The AC outlet should be rated minimum 25 A at 220 VAC, 3 phase, 60 Hz. Do not share the outlet with any other instrument or equipment.

< NOTE >

• Make sure the AC outlet is free of dirt, dust, oil, water, or any other foreign matter.

• The Classic 40 is equipped with an approved NEMA plug configuration (L15-30). The appropriate outlet must be used for this plug type.
(2) Field Wiring Connection

1) Power supply
 • AC 220 V ± 10 %, 3 phase and 60 Hz. Do not connect the unit to any other power supply.
 • The power supply should be a dedicated single outlet circuit with a UL approved short-circuit and ground fault protective breaker with a recommended fuse size of 25 A (25 A maximum).
 • Securely tighten each terminal.

 CAUTION

 Use a specified 25 A fuse. Do not use wiring, copper wire or soldering instead of the fuse. The use of non-specified fuses can cause machine failure or fire.
2) Power supply wires

- Use at least 12 AWG for the power wires.
- Cord type (4 wires): SJO, SJOT, SJOOW or equivalent
 - Voltage rating: 300 V Minimum
 - Heat resistance: 140 °F (60 °C) or above
- Prepare three power wires for power lines and one wire (green) for grounding.
- Make sure to use conduit tubing when installing power wires.

3) Connection to unit

1. Remove three (3) screws from the upper panel on the control panel side and open the upper panel.
2. Pass the power wire through the conduit hole in the left side panel.
3. Attach the conduit tubing to the conduit hole.
 - Trade size of conduit is 1/2 inch.
 - Tightening torque: 0.96 ft•lbf (1.3 N•m)

< NOTE >

- Classic 40 is equipped with phase protectors.
 - The phase sequence is in order of R, S, and T. If the phase sequence is reversed, the unit does not operate. At this condition, exchange two of the power wires for R, S and T terminals.
 - Do not use an extension cord on a cord connected unit.

⚠️ WARNING

All electrical work should only be performed by qualified electrical personnel. Repair to electrical components by non-certified technicians may result in personal injury and/or damage to the unit.
5.4 Wall Thermostat Connection

(1) Connecting wall thermostat to unit

1) Set the wall thermostat to cooling system mode, since most wall thermostats are designed for both heating and cooling.

2) Prepare the wire harness for connection from the unit to the thermostat.
 Recommended wire type and size: Thermostat cable / Solid wire 16 - 26 AWG

3) Identify the thermostat connectors labeled G, Y, and RC.
 G (Fan On/Off), Y (Cooling On/Off) and RC (Cooling Transfer - Common)

4) Connect the wire harness from the terminal of the unit to the thermostat according to the labels shown below.

<table>
<thead>
<tr>
<th>Wall Thermostat Connector Name</th>
<th>Unit Connector Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC</td>
<td>RC</td>
<td>Common</td>
</tr>
<tr>
<td>Y</td>
<td>Y</td>
<td>Cool On/Off</td>
</tr>
<tr>
<td>G</td>
<td>G</td>
<td>Fan On/Off</td>
</tr>
</tbody>
</table>

< NOTE >

Use thermostat that is compatible with millivolt system. Do not connect thermostat to AC power source.
5) Install the wall thermostat to the proper location inside the room where it can be conveniently accessed. Do not install the wall thermostat where unusual heating conditions may occur (i.e. hot stove, hot pipe, fireplace, direct sunlight, etc.)

Most thermostats provide these basic functions:
- Fan Mode: On / Auto (Select the desired fan mode)
- System: Cool / Heater (Select Cool only)
- For wall thermostat operation, see the operation manual supplied with the wall thermostat.

2) Setting unit for wall thermostat connection

1) Press and hold FAN button, SET TEMP UP \(\Delta \) and DOWN \(\nabla \) buttons simultaneously to activate wall thermostat connection.
2) Press SET TEMP UP \(\Delta \) button to select “Sb” indicates on LED display for wall thermostat enable function. (“Ho” indicates on display for wall thermostat disable function.)
3) Press COOL button to set wall thermostat function. If COOL button is not pressed within 10 sec., the setting is automatically confirmed.
5.5 Warning Signal Connection (Output Signal Terminal L+ and L-)

- The controller is equipped with a warning signal output relay type (Form C, normal open dry contact) which can be used to monitor the failure condition.
- Relay contactor is closed when the unit operates abnormally.
- The relay output contactor is rated 2 A at 30 VDC or 2 A at 30 VAC (resistive load) and it is compatible with various warning devices such as alarm speaker, light indicators, etc.

<NOTE>
Use recommended warning signal wire size from 16 AWG to 26 AWG for a solid wire, or 16 AWG to 22 AWG for a stranded wire with ring terminal for #6 stud size.

- Connect the warning device to terminal L+ and L- according to its polarities.
5.6 Fire Alarm Control Panel Connection (Input Signal Terminal E+ and E-)

- The controller is equipped with a normal open input signal connection, which can be connected directly from the fire alarm control panel. This input signal terminal should only be connected to a close or open dry contact signal. When receiving the signal from the fire alarm control panel, the unit turns off and does not turn back on until it has been RESET.

< NOTE >

Use recommended fire alarm signal wire size from 16 AWG to 26 AWG for a solid wire, or 16 AWG to 22 AWG for a stranded wire with ring terminal for #6 stud size.

- Connect the fire alarm device to terminal E+ and E- according to its polarities.
5.7 Basic Operation

(1) Control panel

- Before operating the unit, it is important to be familiar with the basic operation of the control panel.

<table>
<thead>
<tr>
<th>No.</th>
<th>Component</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>COOL ON/OFF Button</td>
<td>Activates/deactivates the cool mode; turns the unit off.</td>
</tr>
<tr>
<td>2</td>
<td>FAN Button</td>
<td>Activates/deactivates the fan only mode; turns the unit off.</td>
</tr>
<tr>
<td>3</td>
<td>SET TEMP Buttons (△/▽)</td>
<td>Increases/decreases the temperature set point during cool mode.</td>
</tr>
<tr>
<td>4</td>
<td>Room Temperature/</td>
<td>Shows a blinking set point temperature for 5 sec, then continuously</td>
</tr>
<tr>
<td></td>
<td>Set Point Display</td>
<td>indicates room temperature.</td>
</tr>
<tr>
<td>5</td>
<td>Temperature Scale LED</td>
<td>Illuminates to indicate the current temperature being displayed is either</td>
</tr>
<tr>
<td></td>
<td></td>
<td>°C or °F.</td>
</tr>
<tr>
<td>6</td>
<td>ON LED</td>
<td>Illuminates during fan only mode and cool mode using fan operate mode.</td>
</tr>
<tr>
<td>7</td>
<td>AUTO LED</td>
<td>Illuminates during cool mode using fan stop mode.</td>
</tr>
</tbody>
</table>

[LED Display Indication] In normal operation, LED displays the following indication.

<table>
<thead>
<tr>
<th>Display</th>
<th>Indication</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>.</td>
<td>Right decimal segment is on</td>
<td>Power stand by or during fan only mode</td>
</tr>
<tr>
<td>0</td>
<td>Indicates wall thermostat enable function is set.</td>
<td>Lit during wall thermostat connection.</td>
</tr>
<tr>
<td>78</td>
<td>Indicates room temperature when display is solid.</td>
<td>During cool mode</td>
</tr>
<tr>
<td>75</td>
<td>Indicates set point temperature when display is</td>
<td>During set point temperature adjustment or cool mode on. (5 sec)</td>
</tr>
<tr>
<td></td>
<td>flashing. (Left fig.: Room temp. at 78 °F)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Left fig.: Set Point temp. at 75 °F)</td>
<td></td>
</tr>
</tbody>
</table>

< NOTE >

- The room temperature display range is from 0 °F to 109 °F.
 (When displayed in °C the range is from -9 °C to 60 °C)
- In Fahrenheit only, when the display value is greater than 99 °F, 100 °F, 101 °F, and 109 °F are displayed as “00”, “01”, and “09” respectively.
(2) Fan only mode

- When the FAN button on the control panel is pressed, the FAN “ON” LED illuminates, and the fan operates. At this time, the compressor is off, and only the fan is in operation. When the FAN button is pressed again, the fan stops.

(3) Cool mode

- When the COOL ON/OFF button is pressed, the FAN “ON” LED illuminates, and room temperature is shown on the display. At this time, the compressor and fan begin to operate to provide cooling. When the COOL ON/OFF button is pressed again, the compressor and fan stop.
- When the COOL ON/OFF button is pressed in fan only mode, room temperature is shown on the display, and the compressor operates to provide cooling. If room temperature reaches the set temperature during cooling operations, the compressor stops, and only the fan continues to operate. (Fan operate mode: * Initial setting)

< NOTE >
The fan only mode will not operate after the cool mode has been activated. Once the cool mode is activated, the unit cannot be turned off by pressing the fan button. Rather, the COOL ON/OFF button must be pressed.

*Fan stop mode

- In fan stop mode, if room temperature reaches the set temperature during cooling operations, both the compressor and fan stop. The fan stop mode setting can be changed using the dip switch on the relay board. (For details, see “Dip switch setting” on page 35). During cooling operations when in the fan stop mode, the FAN “AUTO” LED illuminates.

(4) Change temperature mode “°C” and “°F”

- The temperature display can be switched between “°C” and “°F” by holding down the SET TEMP buttons (△, ▽) and the FAN button simultaneously for at least three sec.

(5) Diagnostic code

- Most of the diagnostic codes can be RESET by holding down the SET TEMP buttons (△, ▽) simultaneously for at least 3 sec. (For details, see “Self-Diagnostic Codes” on Page 44.)
5.8 Relay Board

• The relay board contains the compressor and fan on relays, in addition to a step-down transformer that converts the line voltage (215/220 VAC) to 12 V. This voltage is then converted from AC to DC and used for relay coil activation. The 12 V (DC) power is sent to the control panel assembly, further being reduced to 5 V for the system logic. Lastly, the relay board also contains the dip switch.

(1) Relay board fuse

• The relay board fuse is the only serviceable component on the relay board assembly. This fuse provides protection against damage to the step-down transformer. The fuse must be replaced with the exact same part, or a suitable equivalent.

Specifications:
- 5 A 250 VAC

⚠️ CAUTION
Failure to use the exact same fuse may result in damage to the unit and/or components, and will also void the unit warranty.
(2) Input signal

- The relay board receives inputs from the control panel, sensors, and external devices to perform device control.

Control Panel Input

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Indication</th>
<th>Function</th>
<th>Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW1</td>
<td>ON/OFF Button</td>
<td>On/off control for unit operation. Turns the unit on and off.</td>
<td></td>
</tr>
<tr>
<td>SW2</td>
<td>FAN Button</td>
<td>Changes the fan control mode between continuous and automatic on/off control.</td>
<td></td>
</tr>
<tr>
<td>SW3</td>
<td>SET TEMP Δ Button</td>
<td>Increases the set temperature.</td>
<td>CN17</td>
</tr>
<tr>
<td>SW4</td>
<td>SET TEMP Δ Button</td>
<td>Decreases the set temperature.</td>
<td></td>
</tr>
</tbody>
</table>

Sensor Input

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Type</th>
<th>Specification</th>
<th>Characteristic</th>
<th>“Short” Detection</th>
<th>“Open” Detection</th>
<th>Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTS</td>
<td>Room Thermistor</td>
<td>5 k ohm at 77 °F (25 °C)</td>
<td>181 °F (83 °C) or more</td>
<td>-29 °F (-34 °C) or less</td>
<td>CN11</td>
<td></td>
</tr>
<tr>
<td>CTS</td>
<td>Freeze Protection Thermistor</td>
<td>5 k ohm at 77 °F (25 °C)</td>
<td>181 °F (83 °C) or more</td>
<td>-29 °F (-34 °C) or less</td>
<td>CN12</td>
<td></td>
</tr>
</tbody>
</table>

External Input Signal Specification

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Signal</th>
<th>Specification</th>
<th>Function</th>
<th>Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>E+, E-</td>
<td>Fire Alarm Input</td>
<td>On: Between 10 to 20 mA at DC12 V (Off: No signal)</td>
<td>On: Activates “Defect control” (Contact: Normally open) LED shows “AL”, Output signal “ON” On board buzzer sound</td>
<td>CN15</td>
</tr>
<tr>
<td>OCF1, OCF2</td>
<td>Thermal Relay Protection</td>
<td>On: Between 10 to 20 mA at DC12 V (Off: No signal)</td>
<td>Off: Activates “Defect control” (Contact: Normally closed) LED shows “FL”, Output signal “ON”</td>
<td>CN16</td>
</tr>
<tr>
<td>HPRS</td>
<td>High Pressure Switch</td>
<td>On: Between 0.5 to 1.0 mA at DC5 V (Off: No signal)</td>
<td>Off: 1) < 120 sec.: Compressor stops. 2) 120 sec.: Compressor stops. LED shows “HP” output signal “ON”</td>
<td>CN13</td>
</tr>
</tbody>
</table>
(3) Dip switch setting

- The controller is equipped with a four position dip switch that defaults in the OFF position. The dip switch can be set to configure the following functions:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Item</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSW4</td>
<td>Buzzer</td>
<td>On --- Disable “onboard buzzer”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off --- Enable “onboard buzzer”</td>
</tr>
<tr>
<td>DSW3</td>
<td>-</td>
<td>N/A</td>
</tr>
<tr>
<td>DSW2</td>
<td>-</td>
<td>N/A</td>
</tr>
<tr>
<td>DSW1</td>
<td>Fan Mode</td>
<td>Change Fan Mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>On --- Fan stop mode (Fan AUTO)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off --- Fan operate mode (Fan ON)</td>
</tr>
</tbody>
</table>

![Dip Switch Diagram]
5.9 Control Specifications

(1) Fan control
 • When the FAN button is pressed, the 52ID (fan motor on/off) relay on the relay board turns on, operating the fan.
 • The 52ID relay turns the auxiliary relay on to operate the fan.

Specifications:
 - 52ID (Fan motor On-Off) relay output: 5 A at AC 250 V

(2) Compressor start control
 • When the ON/OFF button is pressed, the 52CM relay on the relay board turns on, operating the compressor.

Specifications:
 - 52CM (Compressor On-Off) relay output: 20 A at AC 250 V

(3) Anti-freeze control
 • Anti-freeze controls turns the compressor on and off by turning the 52CM relay on in accordance with the freeze protection thermistor (CTS) temperature. As a result, decreases in cooling performance due to frost buildup on the evaporator are prevented.
 • Compressor off conditions: Freeze protection thermistor (CTS) temperature \(\leq 28 \, ^\circ F \) (-2.2 °C)
 • Compressor on (recovery) conditions: CTS temperature \(\geq 60 \, ^\circ F \) (15.6 °C)

![Diagram showing 52CM relay operation with freeze protection temperature ranges](image-url)
(4) Compressor time delay control (compressor protection)

- Compressor protection consists of a time delay program within the microprocessor. This program prevents a heavy load from being applied to the compressor motor when restarting the unit (cool mode) after a very short period of time. This “delay” is in effect any time the compressor is turned on by either the COOL ON/OFF button, or power interruption restart (automatic recovery.)

Specifications:
- Time Delay: 120 sec.

![Diagram of Compressor Time Delay Control](image)

Reference: Initial turn on

Within: 120 sec. after (the power cord is connected to) the power supply, the compressor will start with delay timer.

After: 120 sec. since (the power cord was connected to) the power supply, the compressor will start without delay timer.

(5) Automatic restart and recovery function

- The microprocessor contains a feature that automatically restart the unit after power is lost and regained, and also has memory to store and recover operation status in the even of a power loss.

Status of memory during power interruption
- When the input power is off, the status items below are saved in the memory.
 - Running status (on or off)
 - Operating mode: Cool mode or fan only mode
 - Set temperature
 - Temperature mode (°F or °C)
 - Fan mode: Fan operation mode (fan on) or fan stop mode (fan auto)
(6) Temperature control

- During cool mode, temperature control changes the 52CM (compressor on/off) relay status according to RTS temperature in the available range (-4 °F to 140 °F (-20 °C to 60 °C)).

(7) Fire alarm signal control

- When receiving the signal from the fire alarm control panel, the buzzer sounds, and the 52CT (signal output) relay on the relay board turns on.

5.10 Compressor

(1) Compressor motor

- The compressor motor is a three-phase motor and is contained within the same housing as the compressor.

 Specifications:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated Voltage</td>
<td>230 V</td>
</tr>
<tr>
<td>Rated Output</td>
<td>2300 W</td>
</tr>
</tbody>
</table>

(2) Compressor overload relay

- An internal compressor overload relay is used to protect the compressor motor. The relay interrupts the flow of current when there is an overload condition and, high temperature builds up in the compressor.

<table>
<thead>
<tr>
<th>Operating Temperature</th>
<th>Trip Time in Seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>OFF (Open Contacts)</td>
<td>ON (Closed Contacts)</td>
</tr>
<tr>
<td>221 °F (105 °C)</td>
<td>142 °F (61 °C)</td>
</tr>
<tr>
<td>Current</td>
<td>Minimum</td>
</tr>
<tr>
<td>47 A</td>
<td>2</td>
</tr>
</tbody>
</table>
5.11 Fan Motor

(1) For evaporator

- The fan motor is a three-phase, induction type.
- The following table shows the specifications of the fan motor.

Specifications:

<table>
<thead>
<tr>
<th>Rated Voltage</th>
<th>220/240 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated Output</td>
<td>750 W</td>
</tr>
</tbody>
</table>

< NOTE >

An internal overload relay is used to protect the fan motor. This relay is built into the fan motor and interrupts the flow of current when abnormally high temperature builds up in the fan motor.

(2) For condenser

- The fan motor is a three-phase, induction type.
- The following table shows the specifications of the fan motor.

Specifications:

<table>
<thead>
<tr>
<th>Rated Voltage</th>
<th>220/240 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated Output</td>
<td>400 W</td>
</tr>
</tbody>
</table>
5.12 Control Box

(1) Reverse Phase Protector

- The reverse phase protector is operated at nominal voltage of three-phase, 220 V.
- If the phases are reverse, the output relay will not energize.
- The reverse phase protector is reset automatically upon correction of the fault.

Specifications:

| Rated Line Voltage | 220 V |

5.13 Compressor Motor Relay

- The compressor motor relay is a normal open contact relay.
- When the unit is operating in COOL mode, the current is flowing through terminal A1 and A2 of the relay’s coil and causes contactor terminals 1/L1 and 2/T1, 3/L2 and 4/T2, 5/L3 and 6/T3, 13 and 14 to become closed, and the power is supplied to compressor and condenser fan motor.

Specifications:

<table>
<thead>
<tr>
<th>Contact Rating</th>
<th>600 V max., 30 A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coil Rating</td>
<td>240 V max., 0.037 A</td>
</tr>
</tbody>
</table>
5.14 Fan Motor Relay

- The fan motor relay is a normal open contact relay.
- When the unit is operating, the current is flowing through terminal A1 and A2 of the relay's coil and causes contactor terminals 13 and 14, 23 and 24, 33 and 34, 43 and 44 to become closed, and the power is supplied to the evaporator fan motor.

Specifications:

<table>
<thead>
<tr>
<th>Contact Rating</th>
<th>240 V max., 15 A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coil Rating</td>
<td>240 V max., 0.025 A</td>
</tr>
</tbody>
</table>

5.15 Overcurrent Relay

- For the three-phase fan motor, an overcurrent relay is usually used as a safety device. This prevents the motor coil from burning if an overcurrent situation has occurred due to abnormal load on the fan motor, extraordinary change in supply voltage, or loss of current in one phase. If overcurrent flows into the heating coil wound around the bimetallic strip, the bimetallic strip curls, thereby opening the output contact (across terminals 95 and 96). This output contact shuts off the auxiliary relay circuit and brings the unit to a stop.
- Set the current dial according to the table shown below.

<table>
<thead>
<tr>
<th>Contact Rating</th>
<th>Tripping Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>For evaporator fan motor</td>
<td>220 V, 3 A</td>
</tr>
<tr>
<td>For condenser fan motor</td>
<td>220 V, 3 A</td>
</tr>
</tbody>
</table>
5.16 Temperature Thermistor

- The room thermistor (RTS) is installed upstream of the evaporator, and detects evaporator inlet temperature as a resistance value.
- The freeze protection thermistor (CTS) is installed in the evaporator outlet piping, and detects low temperature on the evaporator as a resistance value.

<table>
<thead>
<tr>
<th>Type</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Characteristic</td>
</tr>
<tr>
<td></td>
<td>5 k ohm at 77 °F (25 °C)</td>
</tr>
<tr>
<td>Room Thermistor (RTS)</td>
<td>180 k ohm or more at -29 °F (-34 °C) or less</td>
</tr>
<tr>
<td>Freeze Protection Thermistor (CTS)</td>
<td>5 k ohm at 77 °F (25 °C)</td>
</tr>
<tr>
<td></td>
<td>180 k ohm or more at -29 °F (-34 °C) or less</td>
</tr>
</tbody>
</table>
6. TROUBLESHOOTING

6.1 Troubleshooting

• Before troubleshooting the system, the following inspection should be performed.

(1) Inspection of power source voltage

• Check the voltage of the power source.
 - Three-phase 220 V (60 Hz)
• Check the phase sequence of the power source.

< NOTE >
If the phase sequence is reversed, control panel display turns off. In this case, exchange any two wires out of the three wires to correct the phase sequence.

• Check the operation and condition of the fuse or circuit breaker in the power source.

(2) Inspection of air filters

• Remove the air filters and check the element. If the element is dirty, wash it as described in the OPERATION MANUAL supplied with the unit.
6.2 Self-Diagnostic Codes

- Self-diagnostic codes are displayed on the control board under the following conditions and clear method is as follows.

<table>
<thead>
<tr>
<th>Controller Display</th>
<th>Description</th>
<th>Condition</th>
<th>Reset/Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Room thermistor connection problem</td>
<td>When room thermistor becomes open or shorted.</td>
<td>Disconnect and reconnect the room thermistor. If it does not work, replace room thermistor.</td>
</tr>
<tr>
<td></td>
<td>Freeze protection thermistor connection problem</td>
<td>When freeze protection thermistor becomes open or shorted.</td>
<td>Disconnect and reconnect the freeze protection thermistor. If it does not work, replace freeze protection thermistor.</td>
</tr>
</tbody>
</table>
| ![E4](image) | Activation of protective device | When current of fan motor is abnormal (higher than relay’s current setting value). | 1) See “Trouble shooting chart” on page 47.
2) To Reset : Hold down the SET TEMP (△/▽) buttons simultaneously for 3 sec. |
| ![CF](image) | Loss of cooling detection | When the room temperature minus the freeze protection temperature is less than 9 °F (5 °C) for 1 minute, and this condition occurs 3 times. | 1) See “Trouble shooting chart” on page 47.
2) To Reset : Hold down the SET TEMP (△/▽) buttons simultaneously for 3 sec. |
| ![HP](image) | Activation of high pressure switch | When high pressure switch is activated 3 times in 24 hr, “HP” blinks. | 1) See “Trouble shooting chart” on page 47.
2) To Reset : Hold down the SET TEMP (△/▽) buttons simultaneously for 3 sec. |
| ![AL](image) | Detection of unit stop signal from fire alarm system | Input fire alarm signal from fire alarm system. | 1) Check fire alarm signal off.
2) To Reset : Hold down the SET TEMP (△/▽) buttons simultaneously for 3 sec. |
6.3 Troubleshooting Chart

- To accurately troubleshoot the problem, it is important to carefully confirm the nature of the problem. Typical problems are:
 - Insufficient cooling.
 - Unit does not start (operate).
 - Overflow of drain water.
 - Abnormal noise or vibrations.
 - Others.

(1) Insufficient cooling

- Cooling system problem generally results from electrical or mechanical components such as fan motor, compressor, control switch.

< NOTE >

- In this case, there is a possibility of safety device activating due to the clogged air filter. So make sure to first clean the air filter and then start up again to confirm if the problem lies with the air filter.
- Check the installation site for operating temperature and installation space (unobstructed airflow).
- Check the phase sequence of the power source.
 If the phase sequence is reversed, the display of the control panel and the LED of the reverse phase protector turn off.
<table>
<thead>
<tr>
<th>Condition</th>
<th>Possible Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressor operates.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air volume normal</td>
<td>1. Usage conditions (high temperature). Operation near usage limits.</td>
<td>Review the installation place.</td>
</tr>
<tr>
<td></td>
<td>3. Frost in refrigeration cycle. Clogging at the frost section.</td>
<td>Replace the clogged section pipe.</td>
</tr>
<tr>
<td></td>
<td>4. No temperature difference between evaporator and condenser. Insufficient refrigeration.</td>
<td>Check the leaking part, then repair and charge refrigerant.</td>
</tr>
<tr>
<td>Compressor does not operate.</td>
<td>1. Compressor coil resistance (0 ohm or ∞ ohm). Short or open circuit.</td>
<td>Replace compressor (In case of short, check the compressor relay).</td>
</tr>
<tr>
<td></td>
<td>2. Compressor motor relay. Compressor motor relay does not work.</td>
<td>Replace compressor motor relay.</td>
</tr>
<tr>
<td></td>
<td>3. Compressor relay on the relay board. Open circuit or insufficient contact.</td>
<td>Replace relay board.</td>
</tr>
<tr>
<td>Insufficient air volume</td>
<td>1. Coil resistance of fan motor (0 ohm or ∞ ohm). Short or open circuit.</td>
<td>Replace fan motor (In case of short, check the compressor relay).</td>
</tr>
<tr>
<td></td>
<td>4. Fan on-off relay on relay board. Open circuit or insufficient contact.</td>
<td>Replace relay board.</td>
</tr>
<tr>
<td>In sufficient air volume</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Evaporator. Clogged evaporator or crushed fin.</td>
<td>Repair and clean fins or replace it.</td>
</tr>
<tr>
<td></td>
<td>3. Duct connection condition. Leak or clogged by improper duct connection.</td>
<td>Repair duct connection.</td>
</tr>
<tr>
<td></td>
<td>4. Duct length and diameter. Too long or too small diameter of duct.</td>
<td>Fix duct.</td>
</tr>
</tbody>
</table>
(2) Unit does not start (operate)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Possible Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Does not operate at all</td>
<td>Checking Area</td>
<td>Cause</td>
</tr>
<tr>
<td></td>
<td>2. Phase sequence of the power source.</td>
<td>Phase sequence is reversed.</td>
</tr>
<tr>
<td></td>
<td>3. Ground fault breaker trip.</td>
<td>Ground fault or defective ground fault.</td>
</tr>
<tr>
<td></td>
<td>6. Reverse phase protector.</td>
<td>Open circuit or insufficient contact.</td>
</tr>
<tr>
<td>Control panel display turns on</td>
<td>Display code “E1”</td>
<td>Improper room thermistor connection.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Defective room thermistor (short or open).</td>
</tr>
<tr>
<td></td>
<td>Display code “E2”</td>
<td>Improper freeze protection thermistor connection.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Defective freeze protection thermistor (short or open).</td>
</tr>
<tr>
<td></td>
<td>Display code “E4”</td>
<td>Defective fan motor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Defective overcurrent relay</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See “Stops after running a while” of Troubleshooting on page 48.</td>
</tr>
<tr>
<td></td>
<td>Display code “CF”</td>
<td>Defective compressor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See “Stops after running a while” of Troubleshooting on page 48.</td>
</tr>
<tr>
<td></td>
<td>Display code “HP”</td>
<td>Improper high pressure switch connection.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Defective high pressure switch (short or open).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See “Stops after running a while” of Troubleshooting on page 48.</td>
</tr>
<tr>
<td></td>
<td>Display code “AL”</td>
<td>Input fire alarm signal from fire alarm system</td>
</tr>
<tr>
<td>Condition</td>
<td>Possible Cause</td>
<td>Remedy</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>Stops immediately after starting</td>
<td>Control panel display normally.</td>
<td>1. Fan on-off relay on the relay board. Open circuit or insufficient contact. Replace relay board.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Compressor motor relay. Open circuit or insufficient contact. Replace compressor motor relay.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Compressor relay on the relay board. Open circuit or insufficient contact. Replace relay board.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Reverse phase protector. Open circuit or insufficient contact. Replace reverse phase protector.</td>
</tr>
<tr>
<td>Stops after running a while</td>
<td>Control panel display normally.</td>
<td>1. Resistance of compressor. Operation of safety device (IOLC) due to compressor malfunction. See “Inspection of Compressor Motor” on page 52.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Refrigerant leakage. Insufficient refrigerant or gas leakage. Repair and charge refrigerant.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Dirt on evaporator or condenser. Insufficient cooling of evaporator or condenser. Clean evaporator or condenser.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Duct connection condition. Leak or clogged by improper duct connection. Repair duct connection.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Duct length and diameter Too long or too small diameter of duct. Fix duct.</td>
</tr>
</tbody>
</table>
(3) **Abnormal noise or vibration**

- To prevent abnormal noise or vibration, carefully determine the source of the problem and come up with proper countermeasures to solve the problem so that it does not occur again.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Possible Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abnormal noise or vibration</td>
<td>Checking Area</td>
<td>Cause</td>
</tr>
<tr>
<td>2. Compressor fixing nuts.</td>
<td>Loose nuts.</td>
<td>Tighten nuts further.</td>
</tr>
<tr>
<td>4. Panel fixing screws.</td>
<td>Looseness of screws.</td>
<td>Tighten screws further.</td>
</tr>
</tbody>
</table>

6.4 **Basic Inspection**

- Perform the following inspection before disassembly.

(1) **Inspection of plate fins**

- To inspect the plate fins of either the evaporator or condenser, the air filter must be removed. After removal of the air filters, inspect the plate fins for any dirt, dust, lint, or debris that may have caused insufficient cooling performance of the unit. If cleaning of the fins is necessary, it is recommended that this service be performed by a qualified service technician.

(2) **Examination of operating environment**

- Operating environments can vary depending on location, climate and surrounding conditions. Installation location also can cause operational problems. Consult your reseller concerning operational environment requirements.
(3) **Inspection of cooling capacity performance**

- Measure the difference in temperature between the inlet of the evaporator and the cool air vent. If the difference is out of the range given in the graphs on page 14, proceed with the remedy suggested in the troubleshooting chart on page 45 to 49.
6.5 Inspection of Fan Motor

- Measure resistance across the terminals of the fan motor (except the ground terminal). (All terminals must be disconnected from the unit.)
 - Condenser fan motor: Approx. 16.2 ohm (at 68 °F (20 °C))
 - Evaporator fan motor: Approx. 5.93 ohm (at 68 °F (20 °C))
- If the measured resistance is not equal to the standard values listed above, replace the fan motor.
6.6 Inspection of Compressor Motor

- Measure resistance across the terminals of the compressor motor. (All terminals must be disconnected from the unit.)

⚠️ CAUTION
- To disconnect from the terminals, pull out the plastic connector cap from the compressor. Do not pull the electrical wires.
- To reconnect to the terminals, insert the plastic connector cap straight into the terminals. Do not apply excessive force when inserting the plastic connector cap into the terminals. Maximum clearance space between compressor and plastic connector is 0.08 in (2 mm).

- Resistance value between terminals at 77 °F (25 °C)
 - R-C Approx. 1.23 ohm
 - C-S Approx. 1.47 ohm
 - S-R Approx. 2.7 ohm
- If the measured resistance is not equal to these standard values, replace the compressor. The overload relay is internal to the compressor.

6.7 Thermistor Inspection

- Use an ohmmeter to check the resistance across the 2-pin connector at normal temperature (77 °F (25 °C)).

<table>
<thead>
<tr>
<th>Type</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Room Thermistor (RTS)</td>
<td>5 k ohm at 77 °F (25 °C)</td>
</tr>
<tr>
<td>Freeze Protection Thermistor (CTS)</td>
<td>5 k ohm at 77 °F (25 °C)</td>
</tr>
</tbody>
</table>
6.8 Wiring Connection Inspection

• While referring to the wiring diagrams, check the connection of each wire.

⚠️ CAUTION
Secure the wires using clamps to prevent contact with the edges of the structure, etc. Secure the wires in the same position as prior to removal.

6.9 Refrigerant System Inspection

• In most cases, the probable cause for insufficient cooling is a clogged system, leakage or an incorrect amount of refrigerant. In such cases, inspect the system according to the following procedure.

(1) Inspection of clogged system

• Check the component parts of the refrigerant system, including piping, that could be clogged with refrigerant. If clogged with refrigerant, only the clogged part is frosted partially. In such a case, change the part in question.

(2) Inspection of refrigerant leak

• Carefully check all connections, and each component for leaks whenever the refrigerant system is installed or repaired. Use an electronic gas leak tester to inspect the system.

(3) Insufficient refrigerant

• In case the unit is judged to be deficient in cooling capacity, make sure to perform the inspections (1) and (2) described in “Repair of Refrigerant System” on page 62 to confirm the cause of trouble. Then, charge the system with refrigerant to the specified amount.
7. DISASSEMBLY

7.1 Parts Construction
7.2 Disassembly

1) Remove the four air filters.

2) Take out the four (4) bolts, and then remove the front panel.

3) Take out the three (3) screws, and then open the control box cover.

4) Disconnect the three (3) power supply wires from the terminal, and disconnect the ground wire.

5) Take out the eight (8) bolts, and then remove the left panel.
6) Take out the eight (8) bolts, and then remove the right panel.

7) Take out the six (6) bolts, and then remove the exhaust air duct.

7.3 Removal of Control Panel

1) Disconnect the two connectors (11-pin, 5-pin) from the control panel.

2) Take out the eight (8) screws, and then remove the control panel.
7.4 Removal of Condenser Fan Assembly

1) Take out the two (2) screws, and then remove the sub-control box cover.

2) Disconnect the three (3) power supply wires from the terminal, and disconnect the ground wire.

3) Take off the nut (left-handed screw) and two (2) washers, and then remove the condenser fan.

⚠ CAUTION

- Tightening torque (for Installation):
 - 32.5 ± 3.6 ft•lbf (44.1 ± 4.9 N•m)

4) Take off the four (4) nuts, and then remove the condenser fan motor.
7.5 Removal of Evaporator Fan Assembly

- Center Panel
- Evaporator Fan Inlet Ring
- Evaporator Fan Motor
- Evaporator Fan
- Evaporator Fan Casing
- Cover
1) Disconnect the three (3) power supply wires from the terminal.

2) Disconnect the ground wire.

3) Take off the two (2) wing nuts, and then remove the cover.

4) Take off the four (4) wing nuts, and then remove the evaporator fan casing.
5) Loosen the set bolt using a box wrench, and then remove the evaporator fan.

⚠️ **CAUTION**

- Set Bolt Torque Value (for Installation):
 - 13.3 ± 0.6 ft•lbf (18.0 ± 0.8 N•m)

6) Take off the four (4) nuts, and then remove the evaporator fan motor together with the inlet ring.

7) Take out the three (3) nuts, and then remove the evaporator fan motor.
7.6 Removal of Electrical Components

(1) Control box

1) Take out the four (4) bolts, and then remove the front panel. (See “Disassembly” on page 55.)
2) Take out the three (3) screws, and then open the control box cover. (See “Disassembly” on page 55.)
3) Disconnect each connector, and then remove the electrical parts from the control box.
4) Remove electrical parts.
 - Compressor motor relay: Remove two (2) screws and two (2) washers from the holder.
 - Fan motor relay: Remove the fan motor relay from the holder.
 - Reverse phase protector: Remove four (4) supports from the control box.
 - Over current relay 1: Remove two (2) screws and two (2) washers from the control box.
 - Over current relay 2: Remove two (2) screws and two (2) washers from the control box.
 - Terminal block 1: Remove two (2) screws from the control box.
 - Terminal block 2: Remove two (2) screws from the control box.
 - Terminal block 3: Remove two (2) screws from the control box.
 - Relay board fuse: Take out the fuse from the relay board.
 - Relay board: Remove six (6) supports from the control box.
8. REFRIGERANT SYSTEM REPAIR

8.1 Repair of Refrigerant System

• In case there is a leak, obstruction, or trouble in the refrigerant system of the Classic 40, replace or repair the part in question. After replacing any component all connections must be brazed.

(1) Proper brazing techniques

• It is desirable to use a slightly reducing flame. Oxyacetylene is commonly used since it is easy to judge and adjust the condition of the flame. Unlike gas welding, a secondary flame is used for brazing. It is necessary to preheat the base metal properly depending on the shape, size or thermal conductivity of the brazed fitting.

• The most important point in flame brazing is to bring the whole brazed fitting to a proper brazing temperature. Care should be taken to not cause overflow of brazing filler metal, oxidization of brazing filler metal, or deterioration due to the overheating of flux.

(2) Brazed fittings and fitting clearance

• In general, the strength of brazing filler metal is lower than that of the base metal. So, the shape and clearance of the brazed fitting are quite important. As for the shape of the brazed fitting, it is necessary to maximize its adhesive area. The clearance of the brazed fitting must be minimized to facilitate brazing filler metal to flow into it by capillary action.

(3) Cleaning brazing filler metal and pipe

• When the refrigerant system has been opened up, exposure to heat may have caused brazing filler metal to stick to the inside and outside of the pipe. Brazing filler metal may also be compounded with oxygen in the air to form oxide film. Fats and oils may stick to the pipe from handling. All these factors can reduce effectiveness of brazing. It is necessary to eliminate excess brazing filler metal using sand paper and by cleaning thoroughly with a solvent such as trichlene.

⚠️ CAUTION

Do not use chlorine cleaner.
(4) **Use of dry nitrogen gas**

- During brazing, the inside of the pipe undergoes an oxidative reaction due to the brazing flame. Introduce dry nitrogen gas (0.27 gal/min (1 L/min); adjust with the flow regulator) through the pinch-off tube of the refrigerant.

< NOTE >
Take care not to allow dirt, water, oil, etc. to enter into the pipe.

(5) **Vertical Joint**

- Heat the whole brazed fitting to a proper brazing temperature. Bring the brazing filler metal into contact with the fitting so that the brazing filler metal starts flowing by itself.
- Stop heating the fitting as soon as the brazing filler metal has flown into the clearance. Since the brazing filler metal flows easily into the portion heated to a proper temperature, it is essential to keep the whole fitting at a proper brazing temperature.
8.2 Removal of Refrigeration Cycle Components

⚠️ CAUTION

- Before any refrigeration cycle component can be replaced, it is necessary to recover the refrigerant using standard recovery procedures and equipment.

- To prevent oxidation, dry nitrogen should be conducted (flow rate 0.27 gal/min (1 L/min)) through the pinch-off tube during any brazing operation.

- During any component replacement involving brazing, shield nearby parts with a steel plate, etc., to protect them from the flame.

- Evaporator
- Capillary tube
- Condenser
- Compressor
- High Pressure Switch

< NOTE >

When replacement of the compressor, attach the two pipes (Pipe 1, Pipe 2) which are packaged in Compressor Assy as following figure.
8.3 Charging the System with R-410A Refrigerant

- Always ensure that the refrigerant system has been properly evacuated before charging with the specified amount of R-410A.
- Equipments is only for R-410A.
- Liquid charge (no gas charge).
- Make sure not to use more than 90% of the initial weight of R-410A in the cylinder.

⚠️ WARNING

- When handling refrigerant (R-410A), the following precautions should always be observed:
 - Always wear proper eye protection while handling refrigerant.
 - Maintain the temperature of the refrigerant container below 104 °F (40 °C).
 - Perform repairs in a properly ventilated area. (Never in an enclosed environment.)
 - Do not expose refrigerant to an open flame.
 - Never smoke while performing repairs, especially when handling refrigerant.
 - Be careful the liquid refrigerant does not come in contact with the skin.

- If liquid refrigerant strikes eye or skin:
 - Do not rub the eye or the skin.
 - Splash large quantities of cool water on the eye or the skin.
 - Apply clean petroleum jelly to the skin.
 - Go immediately to a physician or to a hospital for professional treatment.

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Connect manifold gauge.</th>
</tr>
</thead>
</table>
| Step 2 | 1) Evacuate the system.
• 15 min or more.
• 30 inHg (100 kPa) or more of vacuum.
2) Stop evacuating the system.
• Leave for 5 min.
3) Check the vacuum. |
| Step 3 | Connect to refrigerant source. |
| Step 4 | Test the system for leaks. |
| Step 5 | Charge the system with R-410A.
• See specifications on page 8. |
| Step 6 | Remove manifold gauge. |
(1) Connection of gauge manifold

1) Properly remove the crushed end of the pinch-off tube at the high pressure side and the low pressure side of the refrigerant cycle with a pipe cutter.

2) Fit the process tube fitting to the pinch-off tube on both sides.

3) Connect the charging hoses (red-high pressure side) for the gauge manifold to the process tube fitting.

 < NOTE >

 Connect the hoses using care not to mistake the high pressure side for the low pressure side and vice versa.

4) Connect the charging hose (green) at the center of the gauge manifold to the vacuum pump.

(2) Evacuation

1) Open the high pressure valve (HI) of the gauge manifold.

2) Turn on the vacuum pump to start evacuation.
 (Evacuate the system for approximately 15 min.)

3) When the low pressure gauge indicates 30 inHg (100 kPa) or larger, turn off the vacuum pump and close the high pressure valves of the gauge manifold.
(3) Checking vacuum

1) Leave the high pressure valve and the low pressure valve of the gauge manifold closed for five min or more, and confirm that the gauge pointer does not return to zero.

2) If the gauge pointer returns gradually to zero there is a leak somewhere in the system (this could also include gauge manifold). Perform leak check according to procedure indicated in the next step. Once leak has been found and repaired evacuate the system once more, and confirm system holds vacuum.
(4) Checking gas leak

1) Remove the charging hose (green) from the vacuum pump, and connect the hose to the refrigerant cylinder (R-410A).

2) Loosen the nut on the gauge manifold side of the charging hose (green).

3) Open the valve of refrigerant cylinder perform air purging in the charging hose (green). Then tighten the nut.

4) Open the high pressure valve of the gauge manifold. Charge the system with refrigerant until the low pressure gauge indicates 57 psi (390 kPa). After charging is complete, close the high pressure valve.

5) Open the valve of refrigerant cylinder perform air purging in the charging hose (green). Then tighten the nut.

6) Check carefully for gas leaks inside the refrigerant system using the gas leak tester.

7) Repair any leak.

⚠️ WARNING
Do not attempt any repair on a charged system.

⚠️ WARNING
Before checking for gas leaks, fully confirm that there is nothing flammable in the area to cause an explosion or fire. Contact of refrigerant with an open fire generates toxic gas.
(5) Evacuation (repeat)

1) Close the valve of the refrigerant cylinder. Then remove the charging hose (green) from the refrigerant cylinder, and connect it to the refrigerant recovery machine.

< NOTE >
Keep the high pressure valve and the low pressure valve of the gauge manifold closed.

2) Using procedure in the “Evacuation”, evacuate the system until the low pressure gauge indicates 30 inHg (100 kPa) or larger. (For 15 min or more.)

3) After evacuation is complete, close the high and the low pressure valves of the gauge manifold.

⚠️ CAUTION
Make sure to evacuate the system twice or more using the repetitive vacuum method. Evacuate the system an additional time on rainy or humid days.
8.4 Refrigerant Charging Work

(1) Refrigerant charging

1) Remove the charging hose (green) from the vacuum pump, and connect it to the refrigerant cylinder (R-410A).

2) Loosen the nut on the gauge manifold side of the charging hose (green). Open the valve of the charging hose (green). Open the valve of the refrigerant cylinder. After air purging, tighten this nut and close the valve of the refrigerant cylinder.

3) Securely place the refrigerant cylinder on a scale with a weighing capacity of 70 lb (30 kg) that is graduated by 0.2 oz (5 g).

4) Open the high pressure valve of the gauge manifold and the valve of the refrigerant cylinder. Charge the system with refrigerant to the specified amount.

Standard Amount of Refrigerant: 3.90 lb (1.77 kg)

CAUTION

The amount of refrigerant charged has a great effect on the cooling capacity of the unit. Charge to the specified amount, always observing the scale graduations while charging.

5) Close the high pressure valve of the gauge manifold and the valve of the refrigerant cylinder.
(2) Removal of gauge manifold

1) Crimp the pinch-off tube with a pinch-off tool.
2) Remove the gauge manifold and the process tube fitting. Crush the end of the pinch-off tube.
3) Braze the end of the pinch-off tube.
4) Ensure that a gas leak is not present at the pinched off portion and the brazed end.
9. REASSEMBLY

9.1 Removal of Unit

• Reassemble the unit in the reverse order of removal. Described below are the parts that require special care in reassembling the unit. Perform all wiring or rewiring as referenced in the wiring diagram.

9.2 Compressor Mounting

• Mount the compressor on the frame, using cushions, steel collars, plate washers and nuts.

9.3 Condenser Fan Assembly

• Install condenser fan. Allow a clearance of 0.2 in (5 mm) or more on side of the condenser fan.

⚠️ CAUTION

• Tightening torque:
 - 32.5 ± 3.6 ft•lbf (44.1 ± 4.9 N•m)
9.4 Evaporator Fan Assembly

- Install evaporator fan. Allow a clearance of 0.06 in (1.5 mm) or more on side of the evaporator fan.

⚠️ CAUTION
- Tightening torque:
 - 13.3 ± 0.6 ft•lbf (18.0 ± 0.8 N•m)

9.5 Wiring Notice

- Secure the wires using clamps so that they do not come into contact with the edges of the structure, etc. Secure the wires using clamps in the same position they were before removal.

9.6 Perform the Inspection

- Perform the inspection of cooling performance and check for abnormal noise or abnormal vibration.